Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling.

نویسندگان

  • K Zhang
  • Y Chai
  • M M F Yuen
  • D G W Xiao
  • P C H Chan
چکیده

Aligned carbon nanotube (CNT) arrays were fabricated from a multilayer catalyst configuration by microwave plasma-enhanced chemical vapor deposition (PECVD). The effects of the thickness and annealing of the aluminum layer on the CNT synthesis and thermal performance were investigated. An experimental study of thermal resistance across the CNT array interface using the modified ASTM D5470 standard was conducted. It was demonstrated that the CNT-thermal interface material (CNT-TIM) reduced the thermal interfacial resistance significantly compared with the state-of-art commercial TIM. The optimized thermal resistance of the CNT arrays is as low as 7 mm(2) K W(-1). The light performance of high-brightness light-emitting diode (HB-LED) packages using the aligned CNT-TIM was tested. The results indicated that the light output power was greatly improved with the use of the CNT-TIM. The usage of the CNT-TIM can be also extended to other microelectronics thermal management applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid

Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes ...

متن کامل

Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none o...

متن کامل

Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control.

The advantages of printed electronics and semiconducting single-walled carbon nanotubes (SWCNTs) are combined for the first time for display electronics. Conductive silver ink and 98% semiconductive SWCNT solutions are used to print back-gated thin film transistors with high mobility, high on/off ratio, and high current carrying capacity. In addition, with printed polyethylenimine with LiClO4 a...

متن کامل

A Review of Carbon Nanotube Ensembles as Flexible Electronics and Advanced Packaging Materials

The exceptional electronic, thermal, mechanical, and optical characteristics of carbon nanotubes offer significant improvement in diverse applications such as flexible electronics, energy conversion, and thermal management. We present an overview of recent research on the fabrication, characterization and modeling of carbon nanotube (CNT) networks or ensembles for three emerging applications: t...

متن کامل

Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer

We have studied the effects of using a composite fabricated from carbon nanotubes and a host polymer, poly~m-phenylene-vinylene-co-2,5-dioctyloxy-p-phenylene-vinylene! ~PmPV!, as an electron-transport layer in organic light-emitting diodes. Double layer devices using this composite as an electron-transport layer, triple layer devices with a composite electron-transport layer, and poly~9-vinylca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 21  شماره 

صفحات  -

تاریخ انتشار 2008